# Magnetic and Optical Investigation of Mg<sub>6</sub>MnO<sub>8</sub>

P. PORTA AND M. VALIGI

Centro di Studio (C.N.R.) su Struttura ed Attività Catalitica di Sistemi di Ossidi, Istituto Chimico, Università di Roma, Roma, Italy

Received April 4, 1972

Magnetic susceptibility measurements and optical reflectance spectra of the pure compound Mg<sub>6</sub>MnO<sub>8</sub> are reported and discussed. The magnetic moment of  $3.94 \pm 0.08 \mu_B$  and the Weiss temperature of  $-20 \pm 5$  K are consistent with the structure of the compound which has paramagnetic Mn<sup>4+</sup> ions ( $d^3$  configuration) in an octahedral environment with only weak antiferromagnetic interaction. The first spin-allowed  ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$  transition has been assigned to the band observed at 20.4 kK; the remaining bands in the reflectance spectrum also have been assigned.

The compound  $Mg_6MnO_8$  belongs to a class of substances of general formula  $A_6BO_8$  where A and B are 2+ and 4+ cations, respectively. The other members of this class to date known are  $Ni_6MnO_8$  (1) and  $Cu_6PbO_8$  (2).

The crystal structure of  $Mg_6MnO_8$  (2), Fig. 1, is cubic and may be considered as derived from the rock-salt structure of MgO by replacing 1/8 of the  $Mg^{2+}$  cations with  $Mn^{4+}$  ions and 1/8



FIG. 1. Crystal structure of  $Mg_6MnO_8$  (2). Two octants of the cubic unit cell are shown. For the sake of clarity the dimensions of the unit cell and of the ionic radii are not in the same scale.

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. with vacancies. The  $Mn^{4+}$  ions and vacancies occupy (111) alternate lattice layers and are further ordered within the layers such that each  $Mn^{4+}$  ion has six vacancies in place of the nextnearest cation neighbors. Both the 2+ and 4+ cations are octahedrally coordinated by six oxygen ions. The octahedron around the 4+ ions is regular whereas that around the 2+ ions is distorted.

Several studies of the optical properties of  $Mn^{4+}$  ions dispersed in host lattices have been reported (3-6), whereas very little is known about the spectroscopic behavior of pure  $Mn^{4+}$  compounds mainly because of their instability (7, 8). However,  $Mg_6MnO_8$  is a convenient compound to deal with since it is very stable, can easily be prepared pure and contains  $Mn^{4+}$  as a major component instead of being present as impurity ion. These considerations, as well as the characteristic crystal structure described above, have prompted us to investigate the magnetic and optical properties of this compound.

#### **Experimental Procedure**

#### Specimen Preparation.

The sample was prepared according to Wickham (1). A solution of magnesium and manganese acetate (Erba R.P.) in molar ratio 20:1 was prepared. The precipitate obtained by addition of oxalic acid to the boiling solution was filtered, washed, and dried at  $105^{\circ}$ C. Small portions of this product were calcined from 500 to 1200°C in 100°C steps for a few hours in air. From the X-ray spectra the presence of MgO,  $Mg_2MnO_4$ , and  $Mg_6MnO_8$  phases was observed for samples heated at temperatures starting from 900°C, whereas only  $Mg_6MnO_8$  and MgO were observed to be present for samples calcined at 700 and 800°C. The product dried at 105°C therefore was calcined at 800°C for 3 hr in air. After grinding in a mortar, the powder was washed with a hot 10% solution of NH<sub>4</sub>Cl to remove the excess MgO, filtered, washed with water, and finally dried. To test the purity of the final washed product an X-ray spectrum was reasonable.

excess MgO, filtered, washed with water, and finally dried. To test the purity of the final washed product an X-ray spectrum was run on a powder diffractometer at a very low scanning rate. In this spectrum the 220 reflection of MgO, usually strong in intensity (9) and well resolved from the 440 line of Mg<sub>6</sub>MnO<sub>8</sub> was not visible (with CuK<sub>x</sub> radiation the 220 reflection of MgO has  $2\theta = 62.3^{\circ}$  and the 440 reflection of Mg<sub>6</sub>MnO<sub>8</sub> has  $2\theta = 62.7^{\circ}$ ). It may be mentioned that attempts to prepare the pure compound by other methods, described in the literature (2, 10), were unsuccess-

#### Chemical Analysis.

ful.

The total manganese content in the sample was determined spectrophotometrically as permanganate (at  $\lambda = 526$  nm), oxidation to MnO<sub>4</sub><sup>-</sup> being carried out using the periodate method (11). In addition the manganese was also determined oxidimetrically in order to check its oxidation state. An exactly known weight of sample was dissolved in an acid solution  $(H_2SO_4)$ containing a known amount of sodium oxalate. The excess oxalate was titrated against permanganate. The percentage of manganese obtained by this method was calculated assuming the manganese was in the 4+ oxidation state. The results are:  $\sqrt[6]{}_{0}Mn$  total = 16.4;  $\sqrt[6]{}_{0}Mn^{4+}$  = 16.5. The nominal manganese content from the  $Mg_6MnO_8$  formula is 16.7%.

## X-Ray Analysis.

X-Ray diffraction patterns were obtained by means of a Debye-Scherrer camera, 114.6 mm diameter, using  $CuK_{\alpha}$  (Ni-filtered) radiation. Table I reports the X-ray diffraction spectrum of the sample.

## Magnetic measurements.

They were performed using the Gouy method in the temperature range 98–294 K. A Mettler semimicro balance reading to  $\pm 0.01$  mg was

TABLE I X-RAY SPECTRUM OF Mg6MnO8

|                 |           | From           | the       |
|-----------------|-----------|----------------|-----------|
| Our sample      |           | literature (9) |           |
| $d(\text{\AA})$ | $I/I_0^a$ | d(Å)           | $I/I_{o}$ |
| 4.84            | <br>S     | 4.84           | 60        |
| 2.53            | m         | 2.53           | 15        |
| 2.42            | w         | 2.42           | 11        |
| 2.10            | vs        | 2.10           | 100       |
| 1.924           | vw        | 1.923          | 5         |
| 1.613           | w         | 1.613          | 9         |
| 1.483           | s         | 1.482          | 50        |
| 1.417           | w         | 1.417          | 9         |
| 1.278           | vw        | 1.278          | 1         |
| 1.264           | w         | 1.263          | 9         |
| 1.211           | m         | 1.210          | 16        |
| 1.174           | vw        | 1.174          | 5         |
| 1.047           | w         | 1.048          | 7         |
| 0.9612          | vw        | 0.9614         | 5         |
| 0.9371          | s         | 0.9370         | 26        |
| 0.9202          | vw        | 0.9199         | 3         |
| 0.8789          | vw        | 0.8786         | 3         |
| 0.8555          | s         | 0.8554         | 20        |
| 0.8422          | vw        | 0.8423         | 3         |
| 0.8104          | vw        | 0.8102         | 7         |
| 0.8069          | vw        | 0.8065         | 9         |
| 0.7815          | vw        | 0.7815         | 9         |

<sup>a</sup> Relative intensities of lines estimated visually: vs = very strong; s = strong; m = medium; w = weak; and vw = very weak.

employed. The instrument was first calibrated with Hg[Co(NCS)<sub>4</sub>]. The molar magnetic susceptibility corrected for the diamagnetism of the sample was found to obey the Curie-Weiss law  $\chi_m = C/(T - \theta)$ . In Table II the values of  $\chi_m$ 

TABLE II

MOLAR MAGNETIC SUSCEPTIBILITY  $\chi_m$  as Measured at Different Temperatures

| $\chi_m \times 10^3$ (erg·gauss <sup>-2</sup> ·mole <sup>-1</sup> ) | <i>T</i> (K) |
|---------------------------------------------------------------------|--------------|
| 16.7                                                                | 98           |
| 15.8                                                                | 103          |
| 14.5                                                                | 113          |
| 13.5                                                                | 123          |
| 12.8                                                                | 133          |
| 11.9                                                                | 143          |
| 11.3                                                                | 153          |
| 10.7                                                                | 163          |
| 10.1                                                                | 173          |
| 9.6                                                                 | 183          |
| 9.1                                                                 | 193          |
| 8.7                                                                 | 203          |
| 6.2                                                                 | 294          |



FIG. 2. Reflectance spectrum of  $Mg_6MnO_8$ : (a) at room temperature; (b) at liquid nitrogen temperature.

are reported for each temperature. The Curie constant C has been obtained from the slope of the  $\chi_m^{-1}$  vs T plot. The resulting magnetic moment  $\mu$  is field independent and equal to  $3.94 \pm 0.08 \mu_B$  (Bohr magneton), whereas the Weiss temperature  $\theta$  is  $-20 \pm 5$ K.

## **Optical Spectrum**

Diffuse reflectance spectra were obtained with a Beckman DK-1 spectrophotometer in the range of 2500-200 nm, both at room and at liquid nitrogen temperature. The specimen was analyzed against MgO as reference. The spectrum is shown in Fig. 2.

#### **Results and Discussion**

As shown in Table I the powder consists of an uncontaminated  $Mg_6MnO_8$  phase. The results of chemical analyses show that the experimentally determined total manganese content agrees with the value calculated on the basis of the formula  $Mg_6MnO_8$ . Moreover, all the manganese is in the 4+ oxidation state.

The magnetic moment  $\mu$  (3.94 ± 0.08  $\mu_B$ ) agrees with the spin-only value expected for a  $d^3$  ion in octahedral configuration (3.87  $\mu_B$ ); as is well known (12), the spin-orbit contribution is very small in this case. The value of the Weiss temperature  $\theta$  (-20 ± 5 K) implies a weak antiferromagnetic interaction within the solid and is fully consistent with the reported structure of Mg<sub>6</sub>MnO<sub>8</sub> (2) in which the Mn<sup>4+</sup> paramagnetic ions are far apart [5.9 Å in the (110) direction].

The reflectance spectrum of Mg<sub>6</sub>MnO<sub>8</sub> at \_

room and liquid nitrogen temperature is shown in Fig. 2. All observed bands may be fitted quite satisfactorily on the assumption that the 20.4 kK band represents the first spin-allowed  ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$  transition. On the basis of the Tanabe-Sugano diagrams and taking 10 Dq =20.4 kK, the best agreement between experimental and calculated energies is obtained for B = 500 K and C = 4.5 B; being  $B_0 = 1064$  K in gaseous Mn<sup>4+</sup> ion (13),  $\beta$  results to be 0.47. The calculated and experimental band positions are reported in Table III together with the probable assignments.

This attribution is in agreement with the results reported by Allen et al. (7) and by Pfeil (8) for  $K_2MnF_6$ . In our case all the bands are shifted towards lower frequencies resulting, as expected from the nature of the bonded anions concerned, in a smaller value of the crystal field parameter Dq, and a larger covalent bonding in Mg<sub>6</sub>MnO<sub>8</sub> with respect to K<sub>2</sub>MnF<sub>6</sub> (14).

TABLE III EXPERIMENTAL AND CALCULATED BAND POSITIONS (KK) FOR Mg6MnO8

| Band position (kK) |                 |                                                                  |  |  |
|--------------------|-----------------|------------------------------------------------------------------|--|--|
| Experimental       | Calculated      | Assignment                                                       |  |  |
| 11.6               | 10.9            | ${}^{4}A_{2g} \rightarrow {}^{2}E_{g}, {}^{2}T_{1g}(t^{3}_{2g})$ |  |  |
| 16.0               | 16.4            | $\rightarrow {}^{2}T_{2g}(t_{2g}^{3})$                           |  |  |
| 20.4               | 20.4            | $\rightarrow {}^{4}T_{2g}(t_{2g}^{2}e_{g})$                      |  |  |
| 24.4               | 25.0            | $\rightarrow {}^4T_{1g}(t_{2g}^2 e_g)$                           |  |  |
| 33.3               | Probably charge |                                                                  |  |  |
| 37.8               | transfer        |                                                                  |  |  |

The assignment of the 20.4 kK band to the  ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$  transition has also been made on the basis of analogy with the spectra of Cr<sup>3+</sup> and  $Mn^{4+}$  ions dispersed in MgO and  $Al_2O_3$ . In fact the crystal field parameter 10 Dq for Cr<sup>3+</sup> in  $Al_2O_3$  has been found to be 18.2 kK (15), whereas for the same ion in an MgO matrix a value of 16.2 kK is reported (16) (B = 650 K in both)cases). For the  $Mn^{4+}$  ion in  $Al_2O_3$ , 10 Dq is 21.3 kK (3). Comparing these data and considering that the structure of Mg<sub>6</sub>MnO<sub>8</sub> closely resembles the lattice of MgO rather than that of  $Al_2O_3$ , the value of 10 Dq for  $Mn^{4+}$  in Mg<sub>6</sub>MnO<sub>8</sub> should be smaller than 21.3 kK (Mn<sup>4+</sup> in Al<sub>2</sub>O<sub>3</sub>). On the other hand, due to the increased charge of Mn<sup>4+</sup> compared to Cr<sup>3+</sup>, the crystal field parameter should be larger for Mn<sup>4+</sup> and thus higher than 16.2 kK (Cr<sup>3+</sup> in MgO). It should be noted that a spectrum similar to that of Mg<sub>6</sub>MnO<sub>8</sub> (with a broad band centered at about 20.0 kK) has been observed by us for a sample of MgO doped with Mn and Li and containing, as already reported (17), Mn<sup>4+</sup> and Li<sup>+</sup> ions incorporated in the MgO lattice.

## Acknowledgment

The authors wish to thank Professor C. K. Jørgensen for critical reading of the manuscript.

## References

- D. G. WICKHAM, J. Inorg. Nucl. Chem. 26, 1369 (1964).
- 2. L. J. S. KASPER AND J. S. PRENER, Acta Crystallogr. 7, 246 (1954).
- S. GESCHWIND, P. KISLINK, M. P. KLEIN, J. P. REMEIKA, AND D. L. WOOD, *Phys. Rev.* 126, 1684 (1962).
- 4. J. S. PRENER, J. Chem. Phys. 21, 160 (1953).
- 5. M. R. LORENZ AND J. S. PRENER, J. Chem. Phys. 25, 1013 (1956).
- 6. G. KEMENY AND C. H. HAAKE, J. Chem. Phys. 33, 183 (1960).
- G. C. Allen, G. A. M. El-SHARKARWY, AND K. D. WARREN, *Inorg. Nucl. Chem. Lett.* 5, 725 (1969).
- 8. A. PFEIL, Spectrochim. Acta Part A 26, 1341 (1970).
- 9. A.S.T.M. X-Ray Powder Data File, Philadelphia (1966).
- 10. H. TOUSSAINT, Rev. Chim. Minerale 1, 141 (1964).
- A. I. VOGEL, "A Text-book of Quantitative Inorganic Analysis," 3rd ed. p. 787. Wiley, New York (1961).
- B. N. FIGGIS, "Introduction to Ligand Fields," pp. 278–279. Interscience, New York (1967).
- C. K. JØRGENSEN, "Oxidation Numbers and Oxidation States." Springer-Verlag, Berlin (1969).
- 14. C. K. JØRGENSEN, Advan. Chem. Phys. 8, 47 (1965).
- 15. D. S. McClure, J. Chem. Phys. 36, 2757 (1962),
- 16. D. S. MCCLURE, Solid State Phys. 9, 400 (1959).
- A. CIMINO, M. LOJACONO, P. PORTA, AND M. VALIGI, Z. Phys. Chem. (Frankfurt) 59, 134 (1968).